
Available online at www.sciencedirect.com

SCIENCE DIRECT- Remote Sensing
• of

Environment
ELSEVIER Remote Sensing of Environment 101 (2006) 270- 276

www.elsevier.conm/locate/rse

Global distribution of Case-1 waters: An analysis
from SeaWiFS measurements

ZhongPing Lee a,*, Chuanmin Hu b

a Naval Research Lab. Code 7333, Stennis Space Center, MS 39529, USA
College of Marine Science, University of South Florida. 140 Seventh Ave.. South St. Petersburg, FL 33701, USA

Received 22 June 2005; received in revised form 7 October 2005; accepted 5 November 2005

Abstract

"Case-l" has been a term frequently used to characterize water type since the seventies. However, the distribution of Case-I waters in global
scale has been vague, though open ocean waters are often referred to as Case-1 in the literature. In this study, based on recent bio-optical models
for Case-1 waters, an inclusive and quantitative Case-I criterion for remote sensing applications is developed. The criterion allows Case-I waters
to have about two-fold variations of non-pigment absorption and particle backscattering around their exact Case-1 values, allowing a large range
of waters to be classified as Case-1. Even so, application of this criterion to ocean color data from the SeaWiFS satellite sensor suggests that Case-
1 waters occupy only about 60% of the global ocean surface. Regionally, more Case-1 waters are found in the southern hemisphere than in the
northern hemisphere, and most Indian Ocean waters are found to be Case-1. The Case-1 percentage and spatial distribution change with season,
and with the boundaries chosen in the criterion. Nevertheless, this study for the first time provides a quantitative and geographical perspective of
Case-1 waters in global scale, and further demonstrates that many open ocean waters are not necessarily Case-1.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction et al., 2004; Morel, 1988; Prieur & Sathyendranath, 1981; also
see Mobley et al., 2004 for review), and the definitions are not

Studies of ocean optics in the past decades have found that uniform. Commonly, Case-i waters are those whose inherent
there are three major water constituents in addition to water optical properties (Preisendorfer, 1976) can be adequately
molecules that determine water's inherent optical properties described by phytoplankton (represented by chlorophyll
(absorption and scattering): phytoplankton and its associates, concentration, or Chl) (Gordon & Morel, 1983; IOCCG,
colored dissolved organic matter (CDOM), and inorganic 2000; Morel, 1988), whereas Case-2 waters are otherwise. In
mineral particles (Carder et al., 1991; IOCCG, 2000; Sathyen- other words, Case-1 waters, at least, require that the optical
dranath et al., 1989). In modeling the optical properties and in properties of other optically active constituents (CDOM and
particular to retrieve the phytoplankton pigment (chlorophyll-a) particles in particular) closely follow the optical properties of
concentration from ocean color (i.e., water-leaving radiance or phytoplankton (Morel, 1988; Morel & Maritorena, 2001).
radiance of sea), a scheme to simplify the dependence of Clearly, this definition of Case-1 water is not based on its
optical properties on water constituents was proposed: i.e., the geographical location, nor on the Chl value. In fact, coastal
Case-1 and Case-2 separation of natural waters (Morel, 1988; waters could be Case-i, whereas open ocean waters could be
Morel & Prieur, 1977). Case-2. However, the term "Case-I" is frequently used in the

The concept of Case-1 and Case-2 waters, originally literature to characterize open ocean waters.
proposed by Morel and Prieur (1977), has evolved over the On the other hand, in the recent decades, many bio-optical
past decades (Gordon & Morel, 1983; IOCCG, 2000; Mobley models, remote-sensing algorithms for Chl retrievals, and

applications in ocean-color remote sensing have been developed
* Corresponding author. specifically for Case-1 waters e.g. (Gross et al., 2000; Haltrmn,
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2000; O'Reilly et al., 1998; Stamnes et al., 2003). For instance, solely by Chli (Gordon & Morel, 1983; Loisel & Morel, 1998;
in the NASA software package SeaDAS, the default band-ratio Morel, 1988). Therefore, for optically deep waters, a unique
algorithm used to estimate Chi requires water to be Case-i relationship exists between Chi and Case-1 Rrs,(2) (Haltrin,
(SeaWiFS, 2000). To use these Case-1 specific models and 1999; Morel, 1988; Morel & Maritorena, 2001). And, based on
algorithms, knowledge of the distribution of Case-1 waters in the Case-1 bio-optical models developed from extensive
global scale and its temporal variations is required. measurements of Chl and optical properties, the spectral

Ideally, concurrent measurements of both optical properties remote-sensing reflectance (Rrs(2 )) of Case-1 waters can be
(absorption and scattering) and Chl are required to map the calculated when Chl is known (Maritorena & Siegel, 2005;
global distribution of Case-I waters. In practice, however, the Morel & Maritorena, 2001). Specifically, spectral models have
only feasible means is to use ocean color data from satellite been developed to calculate Case-1 water diffuse attenuation
sensors. Therefore, based on the latest bio-optical models for (Kd) and backscattering (bb) coefficients for a given chloro-
Case-1 waters developed from extensive measurements (Morel phyll value (Loisel & Morel, 1998; Morel, 1988; Morel &
& Maritorena, 2001), in this study we devised an inclusive Maritorena, 2001). In the initial steps of calculating absorption
remote-sensing criterion to map Case-I waters using remote- coefficient (a) and irradiance reflectance (R) (Morel &
sensing reflectance (a measure of ocean color). Further, we Maritorena, 2001), Kd is converted to absorption coefficient
applied this criterion to the lately updated satellite data from with an average cosine (Kirk, 1994) value of 0.75, and R is
the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, - 0.33bb/a. This R value is then combined with Kd to calculate
"reprocessing 4") to provide a global perspective of Case-1 another set of a following the Gershun's equation (Morel &
waters and its seasonal variations for the first time. Our goal is Maritorena, 2001). After three iterations (Morel & Maritorena,
to obtain a quantitative understanding of the Case-i water 2001), stable a(A) and R(A) values are obtained. Because Rr, is
distribution on a global scale. In particular, we want to also a function of bb/a for Case-i waters (Morel & Gentili,
examine whether most open ocean waters (i.e., 90% or more) 1993), Rrs(2) is obtained for the given Chli. Following this
are Case-1. approach, Case-I R,,(A) were calculated for Chl values ranging

between 0.02 and 30.0 mg m- 3 (500 points with a step of
2. Remote-sensing criterion for Case-1 waters - 0.01 in log scale). Further, the following spectral ratios were

derived:
After atmospheric correction, spectral water-leaving radi-

ance is derived from the radiance data collected by an ocean RR - R(412) (555)

color satellite sensor (Gordon, 1997). This radiance can be Rrs(443)' R~S(490)
easily converted to spectral remote-sensing reflectance (Rr.,(2)),
defined as a ratio of water-leaving radiance to downwelling Here 412,443,490, and 555 are the center waveiengths (in nm)
irradiance just above the surface. The latter can be adequately of SeaWiFS bands 1, 2, 3, and 5, respectively. RR 12 represents

modeled with information derived from the process of the relative abundance of CDOM per Chli (Carder et al., 1999),

atmospheric correction, for example, aerosol type and optical RR 53 is viewed as a measure of Chli (e.g., Aiken et al., 1995;

thickness (Gordon, 1997). O'Reilly et al., 1998) and Rs(555) as a measure of particle

Absorption, backscattering, and diffuse attenuation coeffi- backscattering (Carder et al., 1999).

cients as well as Chli could be further derived from Rrn(2) with A monotonic line exists between the calculated RR 12 and

a bio-optical algorithm (e.g., Carder et al., 1999; Hoge & Lyon, RR5 3 values (the blue line in Fig. la), because by definition

1996; Lee et al., 2002; Maritorena et al., 2000; Mueller & optical properties of Case-i waters are determined by Chi

Trees, 1997; Roesler & Perry, 1995). However, such derived alone. This monotonic line can be represented accurately (less

parameters are associated with various uncertainties, especially than 1% error) by the following empirical polynomial function

for Chi, due to the assumptions used in the algorithms, such as (RR53 in a range of - 0.2 to - 2.0):

the spectral shapes of chlorophyll and CDOM absorption sl 0) 2

(Nelson & Robertson, 1993; Wang et al., 2005), the specific- RR12 0.9351 + 0.113/RR53 - 0.0217/(RR53
absorption coefficient of Chi (Bricaud et al., 1995, 1981), and + 0.003/((RR 53)3 . (2a)
so on. Different algorithms may yield different Chi estimates
(O'Reilly et al., 1998). These characteristics make it difficult to The superscript [CS11 represents Case-1. Similarly, a mono-
use the derived parameters to map Case-1 waters. Causing tonic line exists between Rr,(555) and RR53 for Case-i waters
further uncertainty is that sometimes the water type (Case-i or (blue line in Fig. lb):
Case-2) needs to be known before an algorithm is used to
derive these parameters (O'Reilly et al., 1998), Hence, it is Rrs(555)[csll = 0.0006 + 0.0027 RR53 - 0.0004(RR53)2

highly desirable to use Rrs(A) directly to separate water types - 0.0002(RR 53)3 . (2b)
such as Case-I and Case-2.

As previously noted, Case-i definitions are not uniform in Included in Fig. la and b are the dependences of RR12 and
the literature (Mobley et al., 2004). However, here we concur R,,(555) on RR53 (discrete points), calculated from field-
with the generally accepted concept that Case-1 waters are measured Rrs data extracted from the SeaWiFS Bio-optical
those whose inherent optical properties can be determined Archive and Storage System (SeaBASS, Werdell & Bailey, in
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press). Apparently, for both RR 12 and Rr,.(555), the above y= 10%) to 100% (when y=- 10%) in the ratio of acDOM(4 4 3 )/
Case-i relationships represent the average trends contained in achl(4 4 3 ) for the same Chl value, when a three-component bio-
measurements. optical model is used (Sathyendranath et al., 2001, 1989). Here

Eqs. (2a) and (2b) provide guidance on the CDOM aCDOM(4 4 3 ) and acr(44 3 ) are the absorption coefficients of
absorption (RR12) and particle backscattering (Rr,(555)) per CDOM and chlorophyll at 443 nm, respectively. The deviation
Chl (RR 53) for Case-I waters. For natural waters, however, ranges in RR1 2 and Rrs(555) thus indicate a loosely defined co-
because CDOM and particles do not necessarily co-vary with variation between absorption (and backscattering) coefficients
Chl, the optical properties (absorption and backscattering and Chl (i.e., an inclusive remote-sensing criterion to classify
coefficients, in particular) will show deviations around their Case-I waters).
exact Case-1 values, as shown in Fig. la and b. To map the
global distribution of Case-I waters using Rrs(A) values, the 3. Global distribution of Case-i waters
rigorous Case-I relationships represented by Eqs. (2a) and (2b)
need to be relaxed, and a quantitative boundary needs to be The above criterion was then applied to SeaWiFS 9-kin data
defined. A water pixel is considered as Case-I if the following ("reprocessing 4") to map the global distribution of Case-i
two conditions are met simultaneously: waters. Seasonally averaged normalized water-leaving radiance

([Lw(.)]N) for the first five bands (412, 443, 490, 510, and 555
( - y)RRIc2S 1l]_RR 2 _<(l + Y)RR~7s1 , (3a) nm) between 23 March 2003 and 23 March 2004 were

and acquired from the Goddard Space Flight Center (http://
oceans.gsfc.nasa.gov/SeaWiFS/Binned/). Rrs(2) (and then

(1 - v)Rrs(555)[CSt<-Rrs(555)-•(1 + v)Rrs(555)Ics11 . (3b) RR 12 and RR53) were calculated as [Lw(A)]NIFo(A) (Morel &
Gentili, 1996), where Fo is the solar constant.

The inclusiveness of Case-I water then relies on the As an example, RR 12, RR 53, and Rs(555) values for
selection of the values of y and v. For the exact Case-I water Autumn 2003 (21 September-20 December) of the global
defined by Eqs. (2a) and (2b) (blue lines in Figs. I and 2), y=0 ocean are presented in Fig. 2a and b. Clearly, when RR53 is
and v=0. Practically, non-zero values have to be used to perceived as a measure of Chl (the numbers in the parenthesis),
account for imperfections and approximations of models and even for waters with Chl less than 1.0 mg/m3 (a range for most
measurements. To be inclusive (though arbitrary), we chose open ocean waters, Antoine et al., 1996), there are wide
y=O. and v=0.5 (i.e., we allowed a ±10% deviation of RR1 2  variations in both RR 12 and R,(555) for each RR53 value,
and at the same time a ±50% deviation of Rrs(555) around their suggesting significantly varying combinations of CDOM and
exact Case-I values: RRfcs 1 and Rrs(555)[csl]). The cyan and suspended particles for the same Chl value. When compared
green lines in Fig. la and b represent the upper and lower with the relationships of RR 12 and Rrs(555) obtained from in
boundaries, respectively. For each RR53, the selected deviation situ measurements (Fig. 1), they are generally consistent with
range for R,,(555) is more than a factor of two, which is each other, respectively. For SeaWiFS data, however, there are
consistent with the range of scattering coefficients of Case-I more points whose RR12 values are less than 0.75 for RR53

waters for a given Chl (Gordon & Morel, 1983). The ±10% ranging between 0.3 and 1.4. These points are located in
deviation of RR12 implies an error of about -40% (when coastal areas where SeaWiFS data may be erroneous (in the
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Fig. 1. RR 12 (a) and Rr(555) (b) predicted by the Case-i bio-optical model (blue lines), as well as the corresponding data (discrete points) extracted from the
SeaBASS data set. RR12 values greater than 1.50 and R,,(555) values greater than 0.01 sr-I are not shown. Blue lines indicate "exact" Case-) waters. Cyan and
green lines indicate ± 10% deviation of RR12 (a) and ±50% deviation of R,,(555) (b), respectively. Case-I water in this study is defined as those points that fall
between the cyan and green lines on both graphs (i.e., both Eqs. (3a) and (3b) are met simultaneously). Numbers in parenthesis (X-axis) are the corresponding Chl
values (in mg m-3) derived from the OC2 algorithm.
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Fig. 2. Similar to Fig. 1, but the discrete data points represent those extracted from the SeaWiFS global data for Autumn 2003 (21 Sept. -20 Dec. 2003). RR12 values
less than 0.50 and R,•(555) values greater than 0.01 sr- I are not shown.

blue bands, in particular) due to the imperfect atmospheric mid Pacific, a lot of surface waters (these waters do not

correction (e.g., Hu et al., 2000). Another possible reason is necessarily overlap with the equatorial upwelling regions) do
that the field data from SeaBASS did not cover the global not meet the Case-1 criterion, possibly due to lower CDOM per
ocean evenly. Nevertheless, these points contribute about 5% Chl (see below, and Siegel et al., 2005) than those predicted by
of the SeaWiFS observed sea surface, therefore have limited the Case-I bio-optical model (Morel & Maritorena, 2001).
effects to the analyses of global distribution of Case-1 waters. Seasonally, there is no substantial change in the total percentage

Fig. 3 shows the global distribution of Case-I and non-Case- of Case-I waters from Spring to Autunn, but the percentage
1 waters based on the inclusive remote-sensing criterion (Eqs. drops significantly in Winter, a result from a significant increase
(3a) and (3b)). Approximately 60% of the global surface water of non-Case-I waters in the southern high latitudes. The spatial
is found to belong to the Case-I category. Regionally, most of distribution of Case-I waters also varies seasonally.
the Case- 1 waters are in the tropical and subtropical areas, along To examine the individual effects of the two conditions set
with waters in the Indian Ocean. About half of the non-Case-1 by Eqs. (3a) and (3b), Fig. 4a and b exemplify Case-i water
waters are found in high latitudes (especially in the northern distribution when only one of the conditions is applied,
hemisphere), and many of them are open ocean waters. In the respectively. In Fig. 4a, where Eq. (3a) alone was applied,

Spring summer

Fig. 3. Global distribution of Case-I waters (blue color) and its seasonal variations as derived from SeaWiFS measurements. See text for Case-I definition.
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a) Autumn Autumn,"

Fig. 4. SeaWiFS-derived Case-I waters (blue color) for Autunr 2003 defined by Eq. (3a) with y =0.1 (a) and by Eq. (3b) with v =0.5 (b), respectively. In (a), cyan
color represents RR12>-l.lRR 52 ; green color represents RRI, between 0.5 and 0.9RRtcsl]; and red color for RR12 <0.5. In (b), cyan color represents
RJ(555)> l.5Rrj(555)1CsII; and green color for Rr(555)<0.5R, (555)rcsl].

- 76% of the global surface ocean (blue color) belongs to this scattering coefficients, which might be the results of different
further relaxed Case-I category. For a large portion of waters in biogeochemical processes (e.g., Balch et al., 2005; Behrenfeld
the mid Pacific (cyan color), their RR 12 values are greater than et al., 2005; Boss & Zaneveld, 2003).
1.lRRr52s', indicating relatively lower CDOM per Chl (Siegel The percentage of Case-I waters depends on the quantita-
et al., 2005). In the high latitude northern hemisphere (green tive boundaries (y and v values). For example in Fig. 5, where
color), RR 12 value are smaller than 0.9RRý s5 ] and indicate we keep y=0.1 but change v from 0.5 to 0.3 (which still
relatively higher CDOM per Chl. This is because Rrn is represents a factor of 1.8 deviation range in Rr,,(555)), we see
inversely proportional to absorption coefficient (Morel & the effects of more tightly defined Case-1 waters for Autumn
Gentili, 1993), smaller RR 12 values indicate higher absorption 2003, where the percentage of Case-I waters (blue color) drops
by CDOM at 412 nm (and then relatively more CDOM) (Carder to 32%. Even so, using this slightly tightened standard, some
et al., 1999; Sathyendranath et al., 2001; Siegel et al., 2005). coastal waters may still belong to Case-I, while many open
Note that CDOM absorption also affects the spectral ratio of ocean waters fall out of the Case-1 category. Indeed, the optical
Rrs(A) (Carder et al., 1989; Sathyendranath et al., 2001). properties of many open ocean waters do not co-vary with Chl
Therefore, if the same empirical band-ratio Chl algorithm (Siegel & Michaels, 1996), if the quantitative standard for "co-
(e.g., OC2 or OC4 algorithm, O'Reilly et al., 1998) is applied to vary" is a ±30% deviation range from its expected value.
the global ocean, Chl may be overestimated in the green colored
waters while underestimated in the cyan colored waters, even 4. Summary
without considering the phytoplankton "packaging effect"
(Bricaud et al., 1995; Bricaud & Morel, 1986). In this study, an inclusive Case-i remote-sensing criterion

Fig. 4b shows the distribution of Case-I waters during was developed from the widely accepted Case-i bio-optical
Autumn 2003 when Eq. (3b) alone was applied (v=0.5). The models (Morel & Maritorena, 2001). This criterion compares
percentage of such Case-i waters in the global ocean is - 88%, the relationships between Rra(412)/Rrs(443) and Rrs(555)/
a result of the relatively large v value. Most (- 90%) of the Rrs(490), and between R,,(555) and Rra(555)IRra(490), to their
cyan colored waters, representing higher backscattering per expected Case-1 values from the bio-optical models. Because
Chl, are in the high latitude southern hemisphere, with the rest only limited natural waters follow the quantitative relationships
spread around many coastal regions (especially river plumes). for Case-I waters exactly, some boundaries were selected to
Clearly, the effects of the two criteria do not completely include more waters as Case-i (Gordon & Morel, 1983). The
overlap, suggesting independent variations of absorption and boundaries include a ± 10% deviation in Rrs(412)/R,,,(443) and

a ±50% deviation in R,,(555) from their exact Case-I values.
Such boundaries are corresponding to about two-fold variations
in the aCDOM( 4 43 )/aChl( 4 4 3 ) ratio and in the backscattering
coefficient at 555 nm for the same Chl valute, respectively.

Application of this inclusive Case-I remote-sensing criteri-
on to the lately updated ("reprocessing 4"), seasonally
averaged (less random errors than daily collections), SeaWiFS
data yielded global distribution of Case-1 waters. Only about
60% of global surface waters could be considered as Case-1 by
this criterion. A substantial portion of the open ocean is non-
Case-1. The spatial distribution of Case-I waters changes with

S.., .. .season. Further, Case-1 distribution patterns obtained firom the
Autumn two individual conditions (absorption component and scatter-

Fig. 5. Global distribution of Case-I waters (blue color) for Autumn 2003 when ing component) do not always overlap, suggesting indepen-
the criterion for Case-l definition is slightly tightened, i.e., v in Eq. (3b) is dently varying water constituents. The spatial resolution of the
changed from 0.5 to 0.3 while y in Eq. (3a) remains as 0.1. SeaWiFS data used in this study is 9 km, as used in other
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